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1 LARODEC, Institut Supérieur de Gestion, Université de Tunis, Tunis, Tunisie
manel.ayadi@hotmail.com, nahla.benamor@gmx.fr
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Abstract. We study single-winner STV from the point of view of com-
munication. First, we assume that voters give, in a single shot, their top-k
alternatives; we define a version of STV that works for such votes, and
we evaluate empirically the extent to which it approximates the stan-
dard STV rule. Second, we evaluate empirically the communication cost
of the protocol for STV defined by Conitzer and Sandholm (2005) and
some of its improvements.

1 Introduction

Single transferable vote (STV)1 is an appealing voting rule: it is relatively easy
to understand, it is not easy to manipulate, and it enjoys a very important nor-
mative property: clone-proofness. It is used in single-winner and multi-winner
political elections in several countries. It fails to satisfy a number of other impor-
tant properties,but in many contexts, being sensitive to cloning may be worse
than the failure of these other properties. On the other hand, when compared
to other rules that are widely used in practice (such as plurality, k-approval for
small k, approval, or plurality with runoff), STV suffers from a significant draw-
back: its direct implementation requires an important amount of information to
be communicated from the voters, because its input consists of a collection of
complete rankings over candidates. Our aim is to get a more accurate idea of
the precise amount of information that we need from the voters to compute or
to approximate STV. We successively consider two contexts.

First, we assume that voters communicate, in a single shot, their top-k candi-
dates, and we use an approximation of STV which needs only these top-k ballots
as input.

Second, we consider interactive communication protocols, to be run between
the central authority and the voters until the outcome of the vote is eventually
determined. We study empirically the average communication complexity of the
protocol defined by Conitzer and Sandholm [2], and of an improved variant of it.

This is a short version of our long paper submitted to SAGT 2018 (this submitted
long version is available at https://goo.gl/Knd59d).

1 For single-winner elections, STV is often called instant runoff voting.
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2 Approximating STV with Truncated Ballots

An election is a triple E = (N,A, P ) where N = {1, ..., n} is the set of voters, A
is the set of candidates, with |A| = m; and P = (�1, ...,�n) is the (preference)
profile, where for each i, �i. A resolute voting rule maps any election to a single
winner.

Given a prespecified linear order � over candidates, called tie-breaking pri-
ority, the STV � rule proceeds in (up to m−1) rounds. (For brevity notation we
will simply write STV , leaving � implicit.) In each round, the candidate with the
smallest number of voters ranking them first is eliminated (using tie-breaking if
necessary), and the votes who supported it now support their preferred candidate
among those that remain.

Given k ≤ m, a top-k ballot is a linear order of k among the m candidates in
A. A top-k profile is a collection of n top-k ballots. Using truncated ballots as
a way of reducing the amount of information in voting has been considered in a
few recent works, especially [1,3,6–8].

For each k ≤ m, STVk is defined similarly as STV, but with top-k ballots
as input. In each round, the candidate ranked first by the smallest number of
voters is eliminated (using tie-breaking if needed). When all k candidates in a
vote have been eliminated, the vote is ignored in later rounds (such a vote will
be said to be exhausted). We repeat this process until there exists a candidate
ranked first by the majority of non-exhausted truncated votes. STV1 coincides
with plurality, and STVm−1 (and STVm) with STV .

In order to evaluate the quality of STVk, we measure the frequency with
which the approximation outputs the true winner using randomy generated date
with the Mallows model, and then using real data.
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Fig. 1. Success probabilities of top-k voting for
STVk: m = 7 varying n, k and φ.
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Fig. 2. Success probabilities of
STVk with Dublin data: varying
k ∈ {1, 2, 3} and n∗ (n∗ < n).

The Mallows φ model is described by two parameters: reference ranking σ and
dispersion parameter φ ∈ [0, 1]. The probability of a ranking r under this model
is: P (r;σ, φ) = 1

Z φd(r,σ) where d is the Kendall tau distance and Z =
∑

r′ φd(r,σ)

is a normalization constant. We draw 1000 random profiles. then we simulate
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the elicitation of top-k (k ∈ {1 . . . 6}) preferences m = 7 and let n and φ vary
(Fig. 1).

Our results suggest that the winner is always predicted correctly when φ ≤
0.8, k = 2 and with large n. When φ = 1, the success rate is 82% with top-4
ballots of 500 voters. In all cases, top-2 ballots seem to be always sufficient to
predict the correct STV winner with 100% accuracy with small values of φ and
high number of voters.

Next, we use the Dublin data (n = 3662, m = 12) from the PrefLib library
[5], with samples of n∗ voters among n (n∗ < n) where 1000 random profiles
are constructed with n∗ voters. Then, we consider the top-k ballots obtained
from these profiles, where k ∈ {1, 2, 3} over 12 candidates, and we compute the
probability of selecting the correct winner (the winner of the complete profile of
the n∗ sampled votes) (Fig. 2). Our results suggest that predicting the correct
winner with a small number of voters fails significantly often when k is too small
(k ≤ 1

4m). Also, the performance increases with n. Indeed, k = 1 is sufficient to
predict the correct winner when n∗ ≥ 1120.

Obviously, increasing the value of k leads to a decrease in the number of
voters needed for correct winner selection for instance, when k = 1

6m (resp.
k = 1

4m) over 12 candidates, n∗ ≥ 830 (resp. n∗ ≥ 710) are needed to always
output the correct result.

3 Communication Protocols for STV

Now, we allow for more sophisticated, interactive protocols where voters may
report their preferences incrementally, when the central authority asks them to
do so; on the other hand, we are not any longer interested in computing an
approximation of STV, but in computing the real STV winner. With the aim of
assessing the communication complexity of STV, Conitzer and Sandholm [2] a
protocol for STV, which we call P1:

1. each voter submits her most preferred candidate over the set of all available
candidates to the central authority (C).

2. let d ∈ A be the candidate ranked first by the fewest voters (using tie-breaking
if necessary).

3. d is eliminated; all voters who had d as their current best candidate receive
a message from C asking them to send their next preferred candidate among
the remaining ones. For each of these voters, their vote is transferred to this
next best remaining candidate.

4. this process is repeated until there exists a candidate x ranked first by more
than 50% of the votes or only one candidate remains in the set of available
candidates.

We say that x ∈ A is an immediate loser if we know that x will be the next
candidate eliminated after the currently eliminated one. Formally, let d be the
candidate which is about to be eliminated, and U the set of remaining candidates
(including d); candidate x is an immediate loser if for every y �= x, d, either (1)
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S(y, PU ) > S(x, PU ) + S(d, PU ), or (2) S(y, PU ) = S(x, PU ) + S(d, PU ) and
y � x.

Eliminating an immediate necessary loser during the execution of the proto-
col will never change the final outcome since we know exactly when it will be
eliminated, then we can safely remove it.2 This is the key property used in the
next protocol, which we call P2, which is an improvement over P1: in P2, the two
first steps are similar as P1. Then, if there is an immediate loser at this point, it
is eliminated as well, together with d; from the set of available candidates. After
d is eliminated, there may be another immediate loser; the process is repeated
until there is no immediate loser. After removing all immediate losers in PU ,
we select a voter whose top candidate is d or an immediate loser. We ask this
voter to report her next preference among the available ones in U . Unlike P1, P2

queries one voter at a time since the new voter’s preference may help to detect
another immediate losers, thus reduce the set of available candidates. We repeat
this process until we obtain a tops-only profile P with candidates among U for
each voter. Finally, the process is repeated until there exists a candidate ranked
first by more than 50% of the votes or only one candidate remains in U .

Now, we evaluate the average communication complexity of P1 and P2 using
data generated from the Mallows φ model. Our objective is to determine the
average communication complexity reported from voters in order to return the
winner. We refer to PWorst as the theoretical communication complexity.

For each experiment, we draw 1000 random profiles. We simulate the number
of bits transferred between the central authority and the voters when with m = 7
and let n and φ vary (see Fig. 3). Results suggest that in practice, we can save
a lot in communication costs compared to the theoretical complexity. Even with
high φ, using P2, we can save almost 50% of bits communicated. Also, our
results suggest that when φ ≤ 0.8, P2 is efficient to reduce the communication
cost. When φ ≥ 0.9, from the results we can detect that P1 and P2 become closer
in communication cost.

Fig. 3. Average communication cost with P1, P2 and PWorst

2 Jiang et al. [4] define a weaker version of necessary losers for STV in the context of
a search algorithm for outputting all parallel universe STV winners.
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